If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-22X-87=0
a = 1; b = -22; c = -87;
Δ = b2-4ac
Δ = -222-4·1·(-87)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-8\sqrt{13}}{2*1}=\frac{22-8\sqrt{13}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+8\sqrt{13}}{2*1}=\frac{22+8\sqrt{13}}{2} $
| y10=0.5 | | 15x-300=0 | | (x-2)^2-10=20 | | 1.2+3.6=x | | 2n-5=14.4n=2n+19 | | 31=6.2/y | | s·3.2=9.6 | | 2x-3x+17=2(x+1)-2x | | 2n-5=144n=2n+19 | | 18=2+2x | | 31=6.2⋅y | | 5x-3=3x17 | | -4n^2=12 | | 8x+5=4.5x | | 36z^2-81=0 | | 7y+12=28 | | 8x=43+3 | | e/4=3/48 | | n+4.5=6 | | x^2+7=-15 | | 3x-5.4=0.2x+1 | | 19.21t=-38.7 | | 13(x-3)+17(x-5)=187 | | πx=4 | | -16t2+40t-16=0 | | 6+n/2=-4 | | 5/6x+3=4/5x-8 | | 19/12t=-38/7 | | 7x+35=130 | | x/1=x-9/5 | | p²-25=0 | | 30/360*16*π=x |